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SUMMARY

The widely studied benchmark problem, two-dimensional-driven cavity flow problem is discussed in detail
in terms of physical and mathematical and also numerical aspects. A very brief literature survey on
studies on the driven cavity flow is given. On the basis of several numerical and experimental studies, the
fact of the matter is that physically the flow in a driven cavity is not two-dimensional above moderate
Reynolds numbers. However, there exist numerical solutions for two-dimensional-driven cavity flow at
high Reynolds numbers. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The lid-driven cavity flow is most probably one of the most studied fluid problems in the field
of computational fluid dynamics. The simplicity of the geometry of the cavity flow makes the
problem easy to code and apply boundary conditions, etc. Although the problem looks simple in
many ways, the flow in a cavity retains all the flow physics with counter rotating vortices appearing
at the corners of the cavity.

Driven cavity flow serves as a benchmark problem for numerical methods in terms of accuracy,
numerical efficiency, etc. In the literature it is possible to find numerous studies on the driven
cavity flow. The numerical studies on the subject of driven cavity flow can be basically grouped
into three categories:

1. In the first category of studies, steady solution of the driven cavity is sought. In these type
of studies the numerical solution of steady incompressible Navier–Stokes (N–S) equations
are presented at various Reynolds numbers.
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2. In the second category of studies, the bifurcation of the flow in a driven cavity from a
steady regime to an unsteady regime is studied. In these studies a hydrodynamic stability
analysis is done and the Reynolds numbers at which a Hopf bifurcation occurs in the flow are
presented.

3. In the third category of studies, the transition from steady to unsteady flow is studied through
a direct numerical simulation (DNS) and the transition Reynolds number is presented.

In the first category studies that present steady solutions at high Reynolds numbers, Erturk
et al. [1], Erturk and Gokcol [2], Barragy and Carey [3], Schreiber and Keller [4], Benjamin and
Denny [5], Liao and Zhu [6], Ghia et al. [7] have presented solutions of steady two-dimensional
incompressible flow in a driven cavity for Re�10000. Among these, Barragy and Carey [3] have
also presented solutions for Re=12500. Moreover, Erturk et al. [1] and Erturk and Gokcol [2]
have presented steady solutions up to Re=20000.

For the second category studies, Fortin et al. [8], Gervais et al. [9], Sahin and Owens [10] and
Abouhamza and Pierre [11] are examples of two-dimensional hydrodynamic stability studies on
driven cavity flow.

In the third category, the following two-dimensional DNS studies on driven cavity flow, Auteri
et al. [12], Peng et al. [13], Tiesinga et al. [14], Poliashenko and Aidun [15], Cazemier et al. [16],
Goyon [17], Wan et al. [18] and Liffman [19] can be found in the literature as an example.

The above studies are all numerical studies. There are very few experimental studies in the
literature on the driven cavity flow. Koseff and Street [20–22] and Prasad and Koseff [23] have
done several experiments on three-dimensional-driven cavity with various spanwise aspect ratios
(SAR). These experimental studies present valuable information about the physics of the flow in
a driven cavity.

Although the driven cavity flow has been studied to this extent in numerical studies, the nature
of the flow at high Reynolds number is still not agreed upon. For example, many studies from the
first category, present steady solutions at very high Reynolds numbers showing that there exists a
solution for steady two-dimensional Navier–Stokes equations for the flow inside a driven cavity.
On the other hand, after a two-dimensional hydrodynamic stability analysis or DNS, the studies
from the second and third category claim that beyond a moderate Reynolds number the flow in
a two-dimensional-driven cavity is unsteady; therefore, a steady solution does not exist; hence a
steady solution at high Reynolds numbers is not computable. These studies from the second and
third categories basically contradict the studies of the first category.

On the basis of the studies found in the literature, we conclude that there are some confusions
on the subject of driven cavity flow. We believe that for this flow problem some important points
have to be discussed and analysed and agreed upon, such as,

• What is the physical nature of the flow in a driven cavity especially at high Reynolds numbers?
Is the physical flow steady or turbulent or periodic in time? Is the flow two-dimensional or
three-dimensional?

• What is the transition Reynolds number from a steady flow to unsteady flow?
• Is it possible to obtain a numerical solution for steady two-dimensional-driven cavity at

high Reynolds numbers? If it is possible then, does it mean that the real flow is steady and
two-dimensional?

• What is the significance of a hydrodynamic stability analysis study of the flow in a driven
cavity? In these studies, whether two-dimensional equations or three-dimensional equations
should be used?
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• What is the significance of a study that analyses the transition Reynolds number in a
driven cavity through a DNS? In these studies, whether two-dimensional equations or three-
dimensional equations should be used? How should we distinguish spurious solutions from
real solutions?

• What is the significance of a study that presents two-dimensional steady solutions of driven
cavity at high Reynolds numbers?

The main purpose of this study then is to discuss the incompressible flow in a two-dimensional-
driven cavity in terms of physical, mathematical and numerical aspects, together with a very brief
literature survey on experimental and numerical studies. We will also present very fine grid steady
solutions of the driven cavity flow at very high Reynolds numbers. On the basis of the results
obtained, we discuss the driven cavity flow in an attempt to address the important points mentioned
above.

2. STEADY SOLUTIONS OF TWO-DIMENSIONAL-DRIVEN CAVITY FLOW

In this section we show that there exists numerical solutions for steady two-dimensional-driven
cavity flow at high Reynolds numbers and moreover these solutions are computable even with a
simple explicit numerical method.

First, as the starting point, we assume that the incompressible flow in a driven cavity is two-
dimensional. A second point is that, we are seeking a steady solution. After these two starting points,
the problem at hand is governed by the two-dimensional steady incompressible N–S equations.
We use the governing equations in streamfunction (�) and vorticity (�) formulation such that

�2�
�x2

+ �2�
�y2

=−� (1)

1
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�2�
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where Re is the Reynolds number, and x and y are the Cartesian coordinates.
Erturk et al. [1] have stated that for square-driven cavity when fine grids are used, it is possible

to obtain numerical solutions at high Reynolds numbers. At high Reynolds numbers thin boundary
layers are developed along the solid walls and it becomes essential to use fine grid meshes. In
addition, when fine grids are used, the cell Reynolds number or the so-called Peclet number defined
as Rec=u�h/� decreases and this improves the numerical stability (see Weinan and Jian-Guo [24]
and Tannehill et al. [25]). In this study, we use a very fine grid mesh with 1025×1025 grid points.
On this mesh we solve the governing Equations (1) and (2) using the SOR method.

The vorticity values at the wall is calculated using Jensen’s formula (see Fletcher [26])

�0= −4�1+0.5�2

�h2
− 3V

�h
(3)

where subscript 0 refers to the points on the wall, 1 refers to the points adjacent to the wall, 2
refers to the second line of points adjacent to the wall, V refers to the velocity of the wall with
its value being equal to 1 on the moving wall, and 0 on the stationary walls while �h is the grid
spacing.
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2.1. Results

As a measure of convergence to the steady state, during the iterations we monitored three residual
parameters. The first residual parameter, RES1, is defined as the maximum absolute residual of
the finite difference equations of steady streamfunction and vorticity Equations (1) and (2). These
are, respectively, given as
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The magnitude of RES1 is an indication of the degree to which the solution has converged to
steady state. In the limit RES1 would be zero.

The second residual parameter, RES2, is defined as the maximum absolute difference between
two iteration steps in the streamfunction and vorticity variables. These are, respectively, given as

RES2� = max(|�n+1
i, j −�n

i, j |)
RES2� = max(|�n+1

i, j −�n
i, j |)

(5)

RES2 gives an indication of the significant digit on which the code is iterating.
The third residual parameter, RES3, is similar to RES2, except that it is normalized by the

representative value at the previous time step. This then provides an indication of the maximum
percent change in � and � in each iteration step. RES3 is defined as

RES3� = max
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In our calculations, for all Reynolds numbers we considered that convergence was achieved when
both RES1��10−10 and RES1��10−10 were achieved. Such a low value was chosen to ensure
the accuracy of the solution. At these convergence levels, the second residual parameters were
in the order of RES2��10−17 and RES2��10−15, which means that the streamfunction and
vorticity variables are accurate to the 16th and 14th digit accuracy, respectively, at a grid point
and even more accurate at the rest of the grids. In addition, at these convergence levels the third
residual parameters were in the order of RES3��10−14 and RES3��10−13, which means that
the streamfunction and vorticity variables are changing with 10−12% and 10−11% of their values,
respectively, in an iteration step at a grid point and even with less percentage at the rest of the
grids. These very low residuals ensure that our solutions are indeed very accurate.
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Figure 1. Schematic view of driven cavity flow.

The boundary conditions and a schematics of the vortices generated in a driven cavity flow
are shown in Figure 1. In this figure, the abbreviations BR, BL and TL refer to bottom right,
bottom left and top left corners of the cavity, respectively. The number following these abbrevia-
tions refer to the vortices that appear in the flow, which are numbered according to size. Erturk
et al. [1] have presented an efficient numerical method and using their numerical method they have
presented steady solutions of the cavity flow up to Reynolds number of 21 000 using a fine grid
mesh. They have clearly stated that in order to obtain a steady solutions at high Reynolds numbers
(Re>10000), a grid mesh larger than 257×257 have to be used. In this study, first, we used a
grid mesh with 257×257 grid points and solved the equations. With these many grid points we
could not obtain a solution for Reynolds numbers above 10 000. Above Re=10000 we observed
that the solution was oscillating. Erturk et al. [1] have stated that at high Reynolds numbers their
solution was oscillating when they were using a coarse grid mesh. They also stated that when they
increased the number of grids used, they were able to obtain a converged solution at the same
Reynolds numbers. We then increased the number of grids to 513×513. This time we were able to
obtain steady solutions up to Re�15000. The important thing to note is that while using this many
number of grids, above Re=15000 the solution was not converging but it was oscillating. Finally,
we increased the number of grids to 1025×1025. This time we were able to obtain converged
steady solutions of driven cavity flow up to Reynolds number of 20 000. Above Re=20000 our
solution was oscillating again. This suggests that most probably, steady computations are possible
when a larger grid mesh is used.

Figures 2 and 3 show the streamfunction and vorticity contours of the cavity flow up to Re�20000
with 1025×1025 grid mesh. These contour figures show that the fine grid mesh provides very
smooth solutions at high Reynolds numbers. The location of the primary and the secondary vortices
and also the streamfunction (�) and vorticity (�) values at these locations are tabulated in Table I.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Streamfunction contours at various Reynolds numbers: (a) Re=1000; (b)
Re=2500; (c) Re=5000; (d) Re=7500; (e) Re=10000; (f ) Re=12500; (g) Re=15000;

(h) Re=17500; and (i) Re=20000.

These results are in good agreement with Erturk et al. [1]. They have stated that they observed the
quaternary vortex at the bottom left corner, BL3, appear in the solution at Re=10000 when fine
grids (600×600) were used. In this study we found that, when a finer grid mesh (1025×1025) is
used, BL3 vortex appear in the solution at Re=7500. This then suggests that in order to resolve
the flow at high Reynolds numbers, fine grids are necessary.

Figures 4 and 5 show the u-velocity distribution along a vertical line and the v-velocity along a
horizontal line passing through the centre of the cavity, respectively, at various Reynolds numbers.
Detailed quantitative results, obtained using a fine grid mesh, was tabulated extensively in Erturk
et al. [1]; therefore, quantitative tabulated results are not repeated in this study. The results obtained

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:275–294
DOI: 10.1002/fld



DISCUSSIONS ON DRIVEN CAVITY FLOW 281
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Figure 3. Vorticity contours at various Reynolds numbers: (a) Re=1000; (b) Re=2500; (c) Re=5000;
(d) Re=7500; (e) Re=10000; (f ) Re=12500; (g) Re=15000; (h) Re=17500; and (i) Re=20000.

in this study agrees well with Erturk et al. [1] and the reader is referred to that study for quantitative
results.

We believe that at high Reynolds numbers, numerical solutions need to be validated as there is a
chance that the solutions could be spurious. If there exists a solution to the two-dimensional steady
incompressible equations at high Reynolds numbers, then this solution must satisfy the continuity
of the fluid. The continuity will provide a very good mathematical check on the solution as it was
first suggested by Aydin and Fenner [27]. We use the u- and v-velocity profiles in Figures 4 and 5
to test the accuracy of the solution. The integration of these velocity profiles will give plus and
minus areas as shown as shaded in Figures 4 and 5. The degree to which the plus and minus areas
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Figure 4. The u-velocity profiles along a vertical line passing through the centre of the cavity:
(a) Re=1000; (b) Re=2500; (c) Re=5000; (d) Re=7500; (e) Re=10000; (f ) Re=12500; (g)

Re=15000; (h) Re=17500; and (i) Re=20000.

cancel each other such that the integration give a value close to zero, will be an indicative of the
mathematical accuracy of the solution. The velocity profiles are integrated using Simpson’s rule
to obtain the net volumetric flow rate Q passing through these sections. The obtained volumetric
flow rates are then normalized by a characteristic flow rate, Qc=0.5, which is the horizontal
rate that would occur in the absence of the side walls (Plane Couette flow) to help quantify the
errors. The obtained volumetric flow rate values (Q1=|∫ 1

0 u dy|/Qc and Q2=|∫ 1
0 v dx |/Qc) are

tabulated in Table II. The volumetric flow rates in Table II are so small that they can be considered
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Figure 5. The v-velocity profiles along a horizontal line passing through the centre of the cavity:
(a) Re=1000; (b) Re=2500; (c) Re=5000; (d) Re=7500; (e) Re=10000; (f ) Re=12500; (g)

Re=15000; (h) Re=17500; and (i) Re=20000.

as Q1≈Q2≈0. This mathematical check on the conservation of the continuity shows that our
numerical solutions are indeed very accurate.

3. DISCUSSIONS ON DRIVEN CAVITY FLOW

The driven cavity flow problem has three aspects; physical (hydrodynamic), mathematical and
numerical (computational) aspects and we think that the problem has to be discussed in terms of
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Table II. Volumetric flow rates through a vertical line, Q1, and a horizontal line,
Q2, passing through the geometric centre of the cavity.

Re Q1= |∫ 10 u dy|
Qc

Q2= |∫ 10 v dx |
Qc

1000 2.451×10−10 4.741×10−11

2500 1.611×10−9 2.550×10−10

5000 5.625×10−9 7.018×10−10

7500 1.034×10−8 9.813×10−10

10 000 1.411×10−8 8.834×10−10

12 500 1.547×10−8 2.795×10−10

15 000 1.313×10−8 9.115×10−10

17 500 5.872×10−9 2.743×10−9

20 000 7.364×10−9 5.252×10−9

these aspects separately. A very brief discussion on computational and also experimental studies
on driven cavity flow can be found in Shankar and Deshpande [28]. First, let us discuss the physical
aspects of the cavity flow and look at the experimental studies.

Koseff and Street [20–22] and Prasad and Koseff [23] have done several experiments on three-
dimensional-driven cavity with various SAR. Their experiments [20–23] have shown that the flow
in a cavity exhibit both local and global three-dimensional features. For example in a local sense
they have found that Taylor–Görtler-Like (TGL) vortices form in the region of the downstream
secondary eddy (DSE). In addition, corner vortices form at the cavity end walls. On a global scale,
due to no-slip boundary condition on the end walls the flow is three-dimensional. They [20–23]
concluded that two-dimensional cavity flow does not exist (up to SAR=3) and furthermore, the
presence of the TGL vortices precludes the possibility that the flow will be two-dimensional even
at large SAR. These conclusions clearly show that a two-dimensional approximation for the flow
in a cavity breaks down physically even at moderate Reynolds numbers.

Their results [20–23] have also shown that the flow is laminar but unsteady even at moderate
Reynolds numbers. The flow starts to show the signs of turbulence characteristics with turbulent
bursts between 6000�Re�8000. Above Reynolds number of 8000 the flow in a cavity is turbulent
(for SAR=3).

According to these valuable physical information provided by [20–23], the fact is that the flow in
the cavity is neither two-dimensional nor steady at high Reynolds numbers. Since two-dimensional
steady flow in a cavity at high Reynolds numbers does not occur in reality, this flow (i.e. two-
dimensional steady cavity flow at high Re) is a fictitious flow, as also concluded by Shankar and
Deshpande [28]. This is a very important fact to remember.

In our computations, as a starting point we have assumed that the flow inside a cavity is two-
dimensional; therefore we have used the two-dimensional Navier–Stokes equations and all of the
solutions presented are based on the assumption that the flow is two-dimensional. This is also
the case in most computational studies on driven cavity flow. At this point we should question
whether or not an incompressible flow inside a cavity can be two-dimensional at high Reynolds
numbers. Let us consider a three-dimensional cavity with a moderate SAR. In this cavity, the
solution in the Z -axis will be reflection symmetric according to the symmetry plane (at the centre
in the Z -axis). For this given SAR cavity, if the Reynolds number is small enough such that the
effect of the no-slip conditions on the end walls in the Z -direction on the flow at the symmetry
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plane is negligible, then the flow at the symmetry plane could be assumed to be two-dimensional.
However, in this cavity if the Reynolds number is high such that the end-wall-effects can no longer
be assumed negligible, although the flow is still reflection symmetric, the flow at the symmetry
plane cannot be assumed two-dimensional as the velocity in the symmetry plane will not be two-
dimensional divergence-free. In terms of the end-wall-effects only the flow in an infinite aspect
ratio cavity (SAR →∞) could be assumed purely two-dimensional at high Reynolds numbers and
this is a fictitious scenario. We note that, here we look at the cavity flow only on a global scale
and consider the end-wall-effects. On a local scale, experiments show that TGL vortices appear
in the region of the DSE and Koseff and Street [20–22] and Prasad and Koseff [23] state that the
presence of the TGL vortices precludes the possibility that the flow will be two-dimensional even
at large SAR. At this point the study of Kim and Moin [29] is noteworthy to mention. They [29]
have numerically simulated the three-dimensional time-dependent flow in a square cavity using
periodic boundary conditions in the spanwise direction. They have observed TGL vortices in the
flow field although they did not have end walls in their simulations. Their results are important
in the fact that in driven cavity flow, the TGL vortices do not even need end walls to initiate.
Therefore, even the flow in an infinite aspect ratio cavity will not be two-dimensional physically
due to the TGL vortices. As a conclusion, physically, at high Reynolds numbers two-dimensional
cavity flow does not exist and any study that considers a two-dimensional flow at high Reynolds
numbers is dealing with a fictitious flow.

Now let us discuss the cavity flow from a mathematical and numerical perspective. In our
computations, we have used two-dimensional N–S equations, and we have also presented steady
solutions of the cavity flow at high Reynolds numbers. In the light of these two points, what could
be the nature of the two-dimensional incompressible flow in a driven cavity at high Reynolds
numbers? Mathematically speaking, a two-dimensional flow cannot be turbulent. Turbulence is by
nature three-dimensional and is not steady. Therefore, due to our two-dimensional assumption,
mathematically the flow could not be turbulent. Thus, when two-dimensional equations are used
and therefore, we do not let the flow be turbulent mathematically, could the flow still be time
dependent, i.e. periodic. Although the two-dimensional high Reynolds number scenario is fictitious,
this is a legitimate question in terms of a mathematical and numerical analysis. At this point we
are trying to answer the mathematical and numerical nature of a fictitious flow and see if there
exists a steady solution to two-dimensional N–S equations or not. Mathematically speaking, a
two-dimensional flow can be either steady (i.e. solution is independent of time) or unsteady but
time dependent (i.e. solution is periodic in time) or unsteady but time independent (i.e. solution is
chaotic). As there is a possibility that the flow could be either steady or unsteady, then is the flow
in cavity steady or unsteady, or in other words does a steady solution to two-dimensional N–S
equations exist or not? In the literature it is possible to find studies that present steady solutions
of two-dimensional incompressible N–S equations at high Reynolds numbers and the studies of
Erturk et al. [1], Erturk and Gokcol [2], Barragy and Carey [3], Schreiber and Keller [4], Benjamin
and Denny [5], Liao and Zhu [6], Ghia et al. [7] can be taken as examples. In the literature there
are also studies that claim that the two-dimensional cavity flow is unsteady and the studies in the
second and third category mentioned in the introduction can be taken as examples.

As mentioned earlier, in the second category studies, researchers have tried to obtain the Reynolds
number at which a Hopf bifurcation occurs in the flow, i.e. the Reynolds number at which the
flow changes from steady to unsteady characteristics. In these studies, the basic steady cavity flow
solution is perturbed with small disturbances and then the eigenvalues of linearized N–S equations
are analysed via hydrodynamic stability analysis.
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As Reynolds number is increased, both external and internal flows exhibit a change from laminar
to turbulent regime. In order to determine the Reynolds number due to which the transition from
laminar to turbulent flow occurs, the Stability Theory is used. According to the Stability Theory, in
investigating the stability of laminar flows, the flow is decomposed into a basic flow whose stability
is to be examined with a superimposed perturbation flow. The basic flow quantities are steady and
the perturbation quantities vary in time. These basic and perturbation variables are inserted into
the N–S equations. Assuming that the perturbations are small, equations are linearized and using a
normal mode form for these perturbations, an Orr–Sommerfeld type of equation is obtained. The
stability of a laminar flow becomes an eigenvalue problem of the ordinary differential perturbation
equation. If the sign of an imaginary part of the complex eigenvalue is smaller than zero then the
flow is stable, if it is greater than zero the flow is unstable (see Schlichting and Gersten [30] and
also Drazin and Reid [31]).

In the case of a driven cavity flow, the stability analysis requires solving the partial differential
eigenvalue problem. Fortin et al. [8], Gervais et al. [9], Sahin and Owens [10] and Abouhamza
and Pierre [11] are examples of hydrodynamic stability studies on driven cavity flow found in the
literature. In these studies [8–11] a two-dimensional basic flow is considered and then the solution
of this two-dimensional basic flow is obtained numerically. Then this solution is perturbed with
two-dimensional disturbances. The perturbation problem at hand is a partial differential eigenvalue
problem, therefore the eigenvalues are also obtained numerically. These studies [8–11] predict that
a Hopf bifurcation takes place in a two-dimensional incompressible flow in a driven cavity some
where around Reynolds number of 8000.

An important point is that, the accuracy of the solution of the perturbation equation (or eigen-
values) completely depends on the accuracy of the solution of the basic flow. Since the perturbation
quantities are assumed to be small compared with the basic flow quantities, any negligible numerical
errors or oscillations in the basic flow solutions, will greatly affect the solution of the perturbation
equation [32–34]. Therefore, for the sake of the accuracy of the solution of the perturbation equa-
tions, a highly accurate basic flow solution is required. In hydrodynamic analysis studies (second
category studies) of driven cavity flow [8–11] the number of grid points used is less than 257×257.
Erturk et al. [1] have reported that when a grid mesh with less than 257×257 points is used
in cavity flow, the solution starts to oscillate around Reynolds number range 7500�Re�12500
depending on the order of the boundary conditions used at the wall. We note that the Reynolds
numbers predicted by Abouhamza and Pierre [11], Fortin et al. [8], Grevais et al. [9], and Sahin
and Owens [10] for Hopf bifurcation (Re≈8000) is in the range, reported by Erturk et al. [1]
(7500–12 500), where the solution becomes oscillatory due to coarse grid mesh (i.e. large Peclet
number). We believe that in these studies [8–11] when the considered Reynolds number is close
to the Reynolds number, where the basic solution becomes oscillatory due to numerical instability,
the solution of the perturbation equation is affected by this numerical instability in the basic flow.
We also believe that in these studies if finer grids were used, the solutions would be different at
high Reynolds numbers.

Most importantly, a hydrodynamic analysis would only be useful and also meaningful when
there exists a physical flow, otherwise the results of such a study would be physically useless.
The experiments of Koseff and Street [20–22] and Prasad and Koseff [23] have shown that the
flow inside a cavity is neither two-dimensional nor steady even at moderate Reynolds numbers.
Therefore, the results of a strictly two-dimensional hydrodynamic analysis (two-dimensional basic
flow with two-dimensional perturbations) of a fictitious cavity flow will be also fictitious and will
have no physical meaning.
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Apart from the studies that examine the hydrodynamic stability of the driven cavity flow by
considering a two-dimensional basic flow perturbed with two-dimensional disturbances mentioned
above, the studies of Ramanan and Homsy [35] and Ding and Kawahara [36] are quite interesting
and important. Both studies have considered a two-dimensional flow for driven cavity and have
analysed when this two-dimensional basic flow is perturbed with three-dimensional disturbances.
Ramanan and Homsy [35] found that the two-dimensional flow loses stability at Re=594 when
perturbed with three-dimensional disturbances. Their results [35] seem to be in accordance with the
experimental studies [20–23]. Ding and Kawahara [36] have predicted the instability at Re=1025
with a frequency of 0.8. We believe that the results of Ding and Kawahara [36] over estimates
the critical Reynolds number (Re=1025) as they have used a slight compressibility in their
simulations, such that their results are not purely incompressible. Note that the critical Reynolds
numbers obtained with considering two-dimensional basic flow perturbed with three-dimensional
disturbances in [35, 36] are much lower than the critical Reynolds numbers obtained with strictly
two-dimensional hydrodynamic analysis in [8–11] in which a two-dimensional basic flow perturbed
with two-dimensional disturbances is considered. This is very important as the results of Ramanan
and Homsy [35] and Ding and Kawahara [36] show that for the hydrodynamic stability of driven
cavity flow the spanwise modes are more dangerous than the two-dimensional modes. Also note
that, their results [35, 36] do not include the effect of the end walls in the spanwise direction.
We expect that with including the effect of end walls and the TGL vortices, a three-dimensional
flow analysis will have a lower critical Reynolds number for stability when perturbed with three-
dimensional disturbances.

As mentioned earlier, in the third category studies, researchers have tried to obtain the Reynolds
number that the flow experiences in a transition from a steady regime to an unsteady regime using
DNS. In these studies, first a Reynolds number is considered for computation and if a steady
solution is obtained for this Reynolds number, then the flow is solved for a higher Reynolds number
and this procedure is continued until a periodic solution is obtained. By doing several runs, the
exact transition Reynolds number at which the solution changes characteristics from steady to
unsteady behavior is obtained. The following studies are example of DNS studies found in the
literature.

Auteri et al. [12] have used a second-order spectral projection method. With this they have
solved the Unsteady two-dimensional N–S equations in primitive variables. They have analysed
the stability of the driven cavity with an impulsively started lid using 160×160 grids. They have
removed the singularity that occurs at the corners of the cavity and increased the Reynolds number
step by step until the solution becomes periodic. They have found that a Hopf bifurcation occurs
in the interval Re=8017.6–8018.8. At this Reynolds number their solution was periodic with
a frequency of 0.4496. They also reported that the cavity flow passes through a second Hopf
bifurcation in the interval Re=9687–9765.

Peng et al. [13] have used a DNS by solving the two-dimensional unsteady Navier–Stokes
equations in primitive variables. Using a maximum of 200×200 grids, they have solved the cavity
flow by increasing the Reynolds number. At Re=7402±4 their solutions became periodic with a
certain frequency of 0.59. As Re was increased to 10 300 the flow became a quasi-periodic regime.
When the Re was increased to 10 325 the flow returned to a periodic regime again. Between
Reynolds numbers of 10 325 and 10 700 the flow experienced an inverse period doubling and
between 10 600 and 10 900 the flow experienced a period doubling. Finally they claimed that the
flow becomes chaotic when Re was greater than 11 000.
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Tiesinga et al. [14] have used Newton–Picard method and recursive projection method using a
128×128 grid mesh and with these they claimed that in a two-dimensional incompressible flow
inside a cavity, the first Hopf bifurcation occurs at Re=8375 with a frequency of 0.44. The next
Hopf bifurcations occur at Re=8600, 9000, 9100 and 10 000 with frequencies 0.44, 0.53, 0.60
and 0.70. At these intervals the flow is either stable periodic or unstable periodic.

Poliashenko and Aidun [15] have used a direct method based on time integration. Using Newton
iterations with 57×57 number of grid points they have claimed that a Hopf bifurcation occurs in
a lid-driven cavity at Re=7763±2% with a frequency of 2.86±1%. They have stated that this
Hopf bifurcation is supercritical.

Cazemier et al. [16] have used proper orthogonal decomposition (POD) and analysed the stability
of the cavity flow. They compute the first 80 POD modes, which on an average capture 95% of
the fluctuating kinetic energy, from 700 snapshots that are taken from a DNS. They have stated
that the first Hopf bifurcation takes place at Re=7819 with a frequency of about 3.85.

Goyon [17] has solved two-dimensional unsteady N–S equations in streamfunction and vorticity
variables using incremental unknowns with a maximum mesh size of 257×257. They have stated
that a Hopf bifurcation appears at a critical Reynolds number between 7500 and 10 000. They
have presented periodic asymptotic solutions for Re=10000 and 12 500.

Wan et al. [18] have solved the two-dimensional incompressible N–S equations using a discrete
singular convolution method on a 201×201 grid mesh. Also Liffman [19] has used a collocation
spectral solver and solved the two-dimensional incompressible N–S with 64×64 collocation points.
Both studies claimed that the flow in a cavity is periodic at a Reynolds number of 10 000.

These are just example studies we picked from the literature that uses DNS to capture the critical
Reynolds number that a Hopf bifurcation occurs in a driven cavity flow.

For a moment, let us imagine that the two-dimensional incompressible flow inside a cavity is
not stable at a given Reynolds number, such that a steady solution does not exist and the solution
is time dependent, as predicted by several studies [12–19]. In this case, if one uses the steady
N–S equations then he/she should not obtain a solution as there is no steady-state solution. In a
previous section, we have shown that there exist steady-state solutions for driven cavity at high
Reynolds numbers and, moreover, these steady-state solutions are computable even with a simple
explicit (SOR) method.

Now let us imagine the opposite, such that, the two-dimensional incompressible flow inside
a cavity is stable at a given Reynolds number, thus the the flow is steady and a steady solution
does exist. In this case, if one uses the unsteady N–S equations for computation, the solution
should converge to this steady solution through iterations in time also. We note that the boundary
conditions are independent of time. Therefore, if there exists a unique solution to steady equations,
then the solution of unsteady equations should converge to this steady solution also, as there is
nothing to drive the solution to vary in time because the boundary conditions are steady and also a
steady solution of governing equations does exist. In this case, if the solution of unsteady equations
do not converge to a steady solution, this would indicate that there are numerical stability issues
with the solution of the unsteady equations and the time-dependent periodic solutions or any other
solution obtained that is different from the steady solution should not be trusted.

Erturk et al. [1] have reported that at high Reynolds numbers when they used a grid mesh of
257×257, they observed that their solutions oscillate in the pseudotime. However, when they used
a larger grid mesh than 257×257, they were able to obtain a steady solution at high Reynolds
numbers. Similarly, in this study, when we used a grid mesh of 257×257, at high Reynolds

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:275–294
DOI: 10.1002/fld



290 E. ERTURK

numbers the solution was not converging to a steady state but it was oscillating, even when very
small relaxation parameters were used. However, when we increased the grid mesh to 513×513,
we were able to obtain steady solutions up to Re=15000. With this many number of grid points,
above this Reynolds number, the solution started to oscillate again even when sufficiently small
relaxation parameters that would not allow the solution to diverge were used. When we increased
the grid points up to 1025×1025, again we were able to obtain steady solutions up to Re=20000.
Therefore, based on the experiences of Erturk et al. [1] and on this study, we conclude that in
order to obtain a steady solution for the driven cavity flow, a grid mesh larger than 257×257 is
necessary when high Reynolds numbers are considered and also at high Reynolds numbers when
a coarse grid mesh is used then the solution oscillates. The interesting thing is that both in this
study and in Erturk et al. [1], the obtained false periodic numerical solutions looked so real and
fascinating with certain frequencies and periodicity. We believe that the studies that presented
unsteady solutions of driven cavity flow using DNS [12–19] have experienced the same type of
numerical oscillations because they used a small grid mesh. We would like to mention that in
all of the DNS studies on the driven cavity flow found in the literature [12–19], the maximum
number of grid points used is 257×257. We believe that because of the course grids used in
[12–19], their periodic solutions resemble the false periodic solutions observed in Erturk et al.
[1] and also in this study when a 257×257 coarse grid mesh is used. We also believe that if a
sufficiently fine grid mesh is used, a DNS algorithm would also confirm the same steady results
obtained in this study and in Erturk et al. [1] at high Reynolds numbers. As Erturk et al. [1] have
stated, one of the reasons why the steady solutions of the driven cavity flow at very high Reynolds
numbers become computable when finer grids are used, may be due to the fact that as the number
of grids used increases, i.e. �h gets smaller, and the cell Reynolds number or so-called Peclet
number defined as Rec=u�h/� decreases. This improves the numerical stability characteristics
of the numerical scheme used (see [24, 25]), and allows high cavity Reynolds number solutions
computable. Another reason may be the fact that finer grids would resolve the corner vortices better.
This would, then, help to decrease any numerical oscillations that might occur at the corners of the
cavity during iterations. When we used a coarse grid mesh in our computations, the oscillations
we observed looked so real that they could easily be mistaken as the real-time behavior of the
flow field. One may think that if the numerical simulation of time-dependent equations (DNS) do
not converge to steady state, then the flow is not hydrodynamically stable. However, one should
not forget that a DNS is also restricted with certain numerical stability conditions, such as a
Peclet number restriction in driven cavity flow as explained. We believe that in a DNS study
extensive grid study should be done to verify the results, otherwise any numerical oscillations
in the solution due to numerical stability issues can easily be confused to be hydrodynamic
oscillations.

Among the DNS studies found in the literature we believe that the studies of Albensoeder
et al. [37] and Albensoeder and Kuhlmann [38] are the most important studies on the driven cavity
flow. In these studies, Albensoeder et al. [37] and Albensoeder and Kuhlmann [38] have solved
the three-dimensional N–S equations using a Chebyshev-collocation method, therefore we believe
that their [37, 38] solutions are very accurate. According to [37, 38] the steady two-dimensional
flow in an infinite SAR cavity with a square cross-section becomes unstable to steady short-
wavelength Taylor Görtler vortices at Re=786.3±6. We note that this three-dimensional DNS
solution of critical bifurcation Reynolds number (Re=786) obtained by Albensoeder et al. [37]
and Albensoeder and Kuhlmann [38] is almost an order lower than the two-dimensional DNS
solutions of critical bifurcation Reynolds number obtained by several authors [12–19].
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The two-dimensional cavity flow at high Reynolds number is a fictitious flow. Mathematically
and numerically it is possible to study fictitious flows and in the literature it is possible to find
many fictitious flows that are the subject of mathematical and numerical studies. For example,
the two-dimensional incompressible flow over a circular cylinder is steady for Reynolds number
up to approximately 40. Beyond that Reynolds number, there appears Karman vortex street at
downstream of the cylinder and the physical, i.e. the real flow, is unsteady. A steady solution beyond
Re=40, if exists, is fictitious. However, for this flow case, the two-dimensional incompressible
flow over a cylinder, it is possible to obtain a steady solution mathematically when Re goes to
infinity as the limiting solution (Kirchoff–Helmholtz solution, see Schlichting and Gersten [30]).
Smith [39] and Peregrine [40] have done detailed mathematical analysis on two-dimensional steady
incompressible flow over a circular cylinder at Reynolds numbers higher than 40. Apart from
these mathematical studies on a fictitious flow, i.e. two-dimensional steady incompressible flow
over a circular cylinder above Re=40, in the literature there are also numerical studies on the
same flow problem. Fornberg [41, 42], Son and Hanratty [43], Tuann and Olson [44] and Dennis
and Chang [45] have presented numerical solutions of steady flow past a circular cylinder at
Re=300,600,500,100 and 100, respectively, which are much larger than Reynolds number of
40. This fact is important such that even though the flow is physically fictitious, a mathematical
solution exists and also it is possible to obtain a numerical solution as well.

In a mathematical study, Burggraf [46] applied Batchelor’s model [47], which consists of an
inviscid core with uniform vorticity coupled to boundary layer flows at the solid surface, to
steady incompressible two-dimensional-driven cavity flow at high Reynolds numbers. Burggraf [46]
analytically calculated the theoretical core vorticity value at infinite Reynolds number as 1.886. As
stated in Erturk et al. [1], when the Reynolds number increases, thin boundary layers are developed
along the solid walls and the core fluid moves as a solid body with a uniform vorticity in the
manner suggested by Batchelor [47]. The numerical solutions of Erturk et al. [1] agree well with
the analytical solution of Burggraf [46] such that as the Reynolds number increases, the computed
vorticity value at the primary vortex asymptotes to the theoretical infinite Re vorticity value.

Figure 6 compares the computed vorticity value at the centre of the primary vortex with the
theoretical infinite Reynolds number core vorticity value. In this figure, the dotted line shows
the theoretical vorticity value. In order to see the effect of the grid spacing on the vorticity
value at the core of the primary eddy, in this figure looking at the solutions of Erturk et al. [1]
with 401×401,513×513 and 601×601 grid mesh (tabulated in Table III, p. 757 in [1]) and the
solutions of this study with 1025×1025 grid mesh, it is clear that when a coarse grid mesh is
used (for second-order spatial accuracy, O(�h2)) the computed vorticity value is less than the
theoretical value in absolute value at high Reynolds numbers and as the number of grids increases
the computed vorticity value gets closer to the theoretical value. The computed value should
asymptote to the theoretical value while remaining greater than the theoretical value in absolute
value. Therefore, for second-order spatial accurate solutions, O(�h2), of driven cavity flow even
1025×1025 number of grids can be considered as a coarse grid mesh at very high Reynolds
numbers. In order to see the effect of the spatial accuracy on the vorticity value at the core of
the primary eddy, in this figure comparing second-order O(�h2) 601×601 grid mesh solutions of
Erturk et al. [1] with fourth-order O(�h4) 601×601 grid mesh solutions of Erturk and Gokcol [2],
we see that as the spatial accuracy increases the computed value agrees better with the theoretical
value. This figure clearly shows that for two-dimensional steady incompressible-driven cavity flow,
at high Reynolds numbers higher-order approximations together with the use of fine grids are
necessary for accuracy.
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Figure 6. Comparison of numerical solutions with theoretical solution.

4. CONCLUSIONS

In this study, the steady incompressible two-dimensional-driven cavity flow is discussed in detail
in terms of physical and mathematical and also numerical aspects. After a brief literature survey
and a detailed discussion on the physical, mathematical and numerical characteristics of the
incompressible flow in a driven cavity, we conclude the following:

1. Physically, the flow in a driven cavity is neither two-dimensional nor steady, most probably,
even at Re=1000.

2. At high Reynolds numbers, when the incompressible driven cavity flow is considered as
two-dimensional and also steady, then the considered flow is a fictitious flow.

3. It would be needless to study the hydrodynamic stability of a fictitious flow, i.e. the two-
dimensional steady incompressible flow in a driven cavity at high Reynolds numbers. Bifur-
cation Reynolds numbers obtained using a three-dimensional hydrodynamic stability analysis
differ an order from that obtained using a two-dimensional hydrodynamic stability analysis
of the driven cavity flow problem.

4. When DNS is used in order to obtain the hydrodynamic stability (i.e. the critical Reynolds
number) of the driven cavity flow problem, extensive grid study should be done and great
care should be given to distinguish any physical behavior from spurious behavior. Three-
dimensional DNS solutions for bifurcation Reynolds number differ an order from that obtained
from two-dimensional DNS solutions of the driven cavity flow problem.

5. Mathematically, it is always possible to obtain a steady solution of a fictitious flow at the
limiting case when Re goes to infinity. As shown in Erturk et al. [1], Bachelor’s [47] model
of recirculating flow confined in closed streamlines at infinite Reynolds number seems to
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work with the square-driven cavity flow. The numerical solutions of Erturk et al. [1] agrees
well with the analytical solutions of Burggraf [46].

6. Numerically, it is possible to obtain numerical solutions of two-dimensional steady incom-
pressible cavity flow at high Reynolds numbers when fine grid meshes are used.

7. The model flow problem, the two-dimensional steady incompressible-driven cavity flow,
serves as a good benchmark problem for different numerical methods and boundary condi-
tions, in terms of accuracy, convergence rate, etc., provided that these numerical solutions
should be used for numerical comparison purposes between different solutions or with the
analytical solution.

8. The fact that we can obtain numerical solutions of a particular two-dimensional steady flow
problem does not necessarily mean that the actual physical flow is two-dimensional and
steady. Similarly, the fact that a particular physical flow problem is not two-dimensional and
steady does not necessarily mean that we cannot obtain two-dimensional steady numerical
solutions of the particular flow.
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